ー側性難聴者が残響下での聴取に適応していく機序に関する検討 ーガンマトーンフィルタバンクによる刺激を用いて--*

◎辻慎也, 荒井隆行(上智大)

1 はじめに

室内において,我々は残響により歪んだ音 を聴取しているが,特にコンサートホールと いった残響時間が長い環境において音声明瞭 度が影響される[1]。聴覚障害者では,残響に よる音声明瞭度の低下が顕著である[2]。

聴覚障害には多様な様相が含まれ、中には 片側耳は正常である一方、対側耳にのみ軽度 以上の難聴を有する、一側性難聴 (UHL; unilateral hearing loss) と呼ばれる状態がある。 一側性難聴により難聴側聴取・騒音下聴取・ 音源定位の3点が困難を要することが従来よ り指摘されてきた[3]。

さらに、我々がこれまでに行ってきた検討 により、一側性難聴では特にその発症直後、 残響により聴取が影響されること、残響下で の聴取には次第に適応していくことが示唆さ れた[4]。発症直後の時期における支援を進め るために、一側性難聴者が残響下での聴取に 適応していく機序を明らかにする必要がある が、不明な点が多く残されている。

本研究では、「発症から長期経過した一側性 難聴者では、良聴耳側から入力される音の各 周波数帯域から得られるキューの寄与が発症 直後と比べて変化する」という仮説を立てた。 以上を検証することを目的として、1)両耳聴、 2)一側性難聴の発症直後の模擬、3)発症か ら長期間経過した一側性難聴者の3群に対し、 異なる帯域のガンマトーンフィルタバンクを 適用した刺激による聴取実験を実施している。 本稿では、文章了解度テストの一部の結果に ついて議論する。

2 方法

一側性難聴者5名(男性1名,女性4名;
28-48歳),両側聴力正常者16名(男性5名,女性11名;20-22歳)が本研究に参加した。
一側性難聴者の難聴の期間は21-48年で,先天的発症が3名,後天的発症が2名だった。

難聴側は左が4名,右が1名。全て,良聴耳 の平均聴力レベル (四分法)は20dBHL以下 で,患耳側は重度難聴であった (Table 1)。

2.1 両耳インパルス応答

残響を付与した刺激は上智大学の 10 号館 講堂の両耳インパルス応答[4]の畳み込みに より作成した。音源と受聴点 (ダミーヘッド) の高さは床から約 1.35 m, 距離は約 3.00 m, 残響時間は約 1.6 秒であった。

無響の刺激は Kayser ら[5]のデータベース より、ダミーヘッドを音源に対して仰角 0°、 距離 3.00 m に置いて収録された無響室での 両耳インパルス応答を使用した。

2.2 文章了解度テスト

無響・残響の両耳インパルス応答を畳み込 んだ刺激を用い,文章了解度 (speech reception threshold; 以下 SRT) テストを実施した。

ターゲット音声は NTT-AT 音素バランス 1000 文[6]から1) 話者が男性アナウンサー, 2) 話速が 7.5-9.0 モーラ/秒, 3) 4-6 文節の, 3 条件を満たす 425 文を選択し, 20 文のリス トを 21 個, 5 文のリストを 1 個作成した。各 文では,文節ごとにキーワードを設定した。 なお,我々の過去の検討では 4-5 文節の文を 用いていた[4]が,聴取実験全体での試行数が 増えたことに伴い,本研究では 6 文節の文を 含めた。マスカとして,選択した 425 文の長 時間平均スペクトルと白色雑音を Praat によ りマッチさせた speech-shaped noise を用いた。

ヒトの聴覚フィルタの特性を考慮するため, 健聴耳でみられる等価矩形帯域幅 (ERB_N; equivalent rectangular bandwidth) [7]の軸上で等 間隔[8]の中心周波数 (0.1–10 kHz), 32 チャン ネル[9]をもつガンマトーンフィルタバンク を刺激に適用した。フィルタバンクの実装に は Matlab の gammatoneFilterBank 関数[10]を 用い,標本化周波数は 22.05 kHz であった。 ガンマトーンフィルタバンクの各チャンネル を足し合わせる範囲を変えて, Broadband・

^{*} An investigation into how individuals with unilateral hearing loss adapt to hearing in reverberant environments: Using stimuli processed by a gammatone filter bank, by TSUJI, Shinya and ARAI, Takayuki (Sophia University).

対象		難聴の期間	難聴耳	平均聴力レベル*			
(P#)	牛齢			(良聴耳,	難聴耳)	難聴の原因	
01	31	21	左	5.00,	SO	突発性難聴	
02	48	48	左	10.00,	SO	不明	
03	28	28	左	6.25,	SO	ムンプス	
04	28	22	右	13.75,	SO	ムンプス	
05	34	34	左	5.00,	108.75	不明	
平均	33.75	29.75		8.75,	109.75		
(SD)	(8.33)	(10.88)		(3.43)	(0.56)	SO: スケールアウト	

 Table 1 Demographics of participants with unilateral hearing loss.

* 難聴耳の平均聴力レベルは、SO=110 dB HL として算出

Low frequency · High frequency の各帯域ごと に SRT を測定した。チャンネル数などの詳細 を Table 2 に示す。各チャンネルには異なった 処理の遅延があるので,足し合わせる際には 遅延を考慮した zero-padding を行った[9, 10]。

SRT の測定の冒頭では、マスカの等価騒音 レベルは 65 dB (A) とし、無響の刺激は音声 を 53 dB (A), 残響の刺激は音声を 61 dB (A) とした。実験参加者には呈示した刺激音声の 復唱を求め、文節ごとに設定したキーワード を3つ以上復唱できるまで音声の音圧を4dB (A) ずつ上げるという試行を同一の文で繰り 返した。復唱できた SN 比から one-up / onedown の階段法により, 50% 閾値[11]で SRT の 測定を始めた。その後の各試行では、参加者 がキーワードを3 つ以上復唱できた場合は SN 比を 2 dB 下げ, 復唱できなければ SN 比 を 2 dB 上げた。ターゲットの最大音圧は 85 dB(A) として、それまではターゲット音声の 音圧を操作し,最大音圧の時はマスカの音圧 を操作して SN 比を増減させた。SN 比の増減 が2回折り返した後,6回折り返すまで試行 を行い、最後の6回のSN比を算術平均する ことでSRTを求めた。5文のリストの音声を 使用して、テスト前に練習を行った。

両耳インパルス応答の畳み込みには Matlab を用いた。刺激の立ち上がりと立ち下がりに は 10 ms のコサイン関数によって時間包絡を 付与した。無響の刺激では 21 の 20 文リスト のうち 10 個を, 残響を付与した刺激ではそれ と重複しない 11 個の 20 文リストをターゲッ ト音声として用いた。

2.3 手続き

実験は上智大学の防音室で行われた。本稿

Table 2 Center frequencies and bandwidths ofgammatone filter bank for each stimulus condition.

	Channel number	Center frequency [Hz]	Bandwidth [Hz]
Broadband	1–32	100-10,000	36–1,125
Low frequency	1–16	100-1,506	36–191
High frequency	17–32	1,710–10,000	213-1,125

に関わる手続きは 1) 紙面によるデモグラフ ィック要因の収集, 2) オージオメータ (RION, AA-79S) による純音聴力の測定, 3) 文章了解度テストであった (同時にメロディ 聴取テストを行った)。

刺激音の呈示と回答の正誤・刺激音の SN 比 の記録には Matlab の UI を用いた。刺激音は コンピュータからオーディオインタフェース (Roland, Rubix22) を介し, ヘッドホン (SENNHEISER, HD 300 PRO) により呈示した。 両側聴力正常者のうち半数にはヘッドホンに より両側呈示 (binaural normal hearing; 以下 BNH, n = 8) し, もう半数には片側のみ呈示 (monaural normal hearing; 以下 MNH, n = 8) し, もう半数には片側のみ呈示 (monaural normal hearing; 以下 MNH, n = 8) し た。MNH では刺激を呈示する側の耳は左右 同数になるようランダムに選択し,反対側の 耳には耳栓 (3M, 1100 foam-type earplugs) を 装用させ刺激の陰影聴取を防ぎ,一側性難聴 の状態を模擬した。一側性難聴者 (以下 UHL, n = 5) にはヘッドホンにより両側呈示した。

無響・残響を付与した刺激のそれぞれで、
 SRT は9回測定した。本稿では、ターゲット
 音声とマスカの両方に正面(0°)の両耳イン
 パルス応答を畳み込んだ刺激を用いて、
 Broadband・Low frequency・High frequencyの
 帯域ごとに測定した SRT について議論する。

Fig. 1 に SRT の raincloud plot を記す。残響 下の Low frequency での測定において,全て の群で SN 比が+50 dB であっても折り返しが 収束しなかった試行が 1,2 件あり,その結果 は図示や分析からは外した。統計分析には R (4.2.2)を用いた。SRT を応答変数,聴取条件 を説明変数として,線形混合モデルによるパ ラメータ推定を行い,変量効果は実験参加者 とした。各説明変数のp値の算出には ImerTest パッケージを用いた。多重比較では, Bonferroni 法でp値を補正した。各群の SRT の推定周辺平均と 95%信頼区画 (以下 *M*, CI) の算出には emmeans パッケージを用いた。 Table 3 に各群の SRT の $M \cdot CI$ を記す。

無響下での SRT は, Broadband での測定で BNH と MNH (M = -3.46 vs. -1.50; $\beta = -1.96$, s.e. = 0.60, t = -3.29, p < 0.05), MNH と UHL (M= -1.50 vs. -3.33; $\beta = -1.83$, s.e. = 0.68, t = 2.68, p < 0.05), High frequency での測定で BNH と MNH (M = -0.41 vs. 3.42; $\beta = -3.83$, s.e. = 1.22, t = -3.14, p < 0.05), MNH と UHL (M = 3.42 vs. -0.87; $\beta = 4.28$, s.e. = 1.39, t = 3.09, p < 0.05) の 間に有意差がみられた。その他の測定では SRT に有意差はみられなかった。

残響下での SRT は, Broadband での測定で BNH と MNH (M = 2.29 vs. 6.46; β = -4.16, s.e. = 1.05, t = -3.96, p < 0.01), MNH と UHL (M = 6.46 vs. 3.07; β = 3.39, s.e. = 1.20, t = 2.82, p < 0.05) の間に有意差がみられた。その他の測 定では SRT に有意差はみられなかった。

4 考察

本検討では両耳聴 (BNH)・一側性難聴の発 症直後の模擬 (MNH)・少なくとも21 年以上 一側性難聴だった者 (UHL) の3 群を対象と して,無響・残響を付与した刺激の ERB_N軸 上での各帯域ごとに,雑音下での文章了解度 (SRT)を測定し,一側性難聴者が残響下での 聴取に適応していく機序を検討した。

Broadband での測定では、UHL は MNH と 比べ有意に低い SRT (i.e., 高い音声明瞭度) を示した (Fig. 1, Table 3)。過去の検討と同様, 一側性難聴者では残響下聴取へ適応がみられ るという見解[4]が支持される結果となった。 無響の刺激を用いた測定について, Low frequency では SRT に有意差はみられなかっ **Table 3** Estimate marginal means (*M*) and 95% confidence intervals (CI) of the speech reception thresholds (SRTs) for each of the binaural normal hearing (BNH), monaural normal hearing (MNH), and unilateral hearing loss (UHL) groups.

联西夕仙			SRT (M)	CI	
腮取余件			[dB]	Low	High
Anechoic	Broadband	BNH	-3.46	-4.35	-2.58
		MNH	-1.50	-2.39	-0.61
		UHL	-3.33	-4.46	-2.21
	Low frequency	BNH	1.76	0.42	3.10
		MNH	0.54	-0.80	1.89
		UHL	2.40	0.70	4.10
	High frequency	BNH	-0.41	-2.21	1.40
		MNH	3.42	1.61	5.22
		UHL	-0.87	-3.15	1.42
Reverberant	Broadband	BNH	2.29	0.73	3.86
		MNH	6.46	4.89	8.02
		UHL	3.07	1.09	5.05
	Low frequency	BNH	30.50	23.74	37.26
		MNH	30.81	24.56	37.06
		UHL	26.17	17.89	34.44
	High frequency	BNH	2.46	0.65	4.27
		MNH	4.58	2.77	6.39
		UHL	3.40	1.11	5.69

M: 推定周辺平均, CI:95%信頼区画

Hearing condition 芎 BNH 🖨 MNH 🖨 UHL

Fig. 1 Raincloud plots for the speech reception thresholds (SRTs) including raw jittered data, boxwhisker plots, and split-half violins for three hearing conditions; BNH (n = 8), MNH (n = 8), and UHL (n = 5). The solid horizontal lines indicate the median. **p < 0.01, *p < 0.05. たが, High frequency では, UHL は MNH と 比べ有意に低い SRT を示した (Fig. 1, Table 3)。 一側性難聴では両耳間情報が損なわれるが,

一方で頭部伝達関数 (head-related transfer function; 以下 HRTF) により得られるスペク トラルキューを活用し、例えば、音源方向を 判断し得る[12]。HRTFによって生じるスペク トルの変化は4kHz以上の帯域で顕著である [13]。Agterberg ら[14]は一側性難聴者の良聴 耳側の聴力と音源定位の成績の関わりを検討 した。その結果、良聴耳側での8kHzの聴力 レベルが 40 dB HL 以上だった参加者は音源 定位の成績が悪かったが、一方で高域の聴力 が良い参加者が必ずしも良い成績を示すわけ でなく,個人差が認められた[14]。本研究では UHL・MNH ともに、参加者は全て高域の(良 聴耳側の) 聴力が 20 dB HL 以下であったが, 無響の刺激の High frequency での測定にて SRT に有意差がみられた (Fig. 1)。したがっ て,発症から長期経過した一側性難聴者では, 高帯域でのキューに適応することにより音声 明瞭度にも向上がみられることが示唆された。

残響を付与した刺激を用いた測定について, High frequency · Low frequency ともに全ての 群で SRT に有意差がみられなかった。低域の 残響時間のみを様々に変化させて、 中国語の 音声明瞭度を検討した研究では、125-250 Hz の残響時間が 500 Hz 以上より長い場合, 音声 明瞭度が有意に低下したと報告されている [15]。本研究において, High frequency では全 ての群で Broadband と同等の SRT がみられ た。しかし, Low frequency では SRT が高く, 全ての群で SN 比+50 dB でも測定が収束しな かった例があり (i.e., フロア効果が生じた), 残響による音声明瞭度への影響は低域で顕著 ということが示唆された。一方で、低域も含 まれた Broadband の測定で, UHL は MNH と 比べ有意に低い SRT を示した (Fig. 1, Table 3)。

ー側性難聴では音の聴取時に脳が賦活する 部位が違うことから,高次における可塑性に ついての言及がなされている[16]。両耳聴で はスケルチ効果により残響の影響が抑えられ [17],音声明瞭度にも寄与する[18]。一側性難 聴では高域で得られるキューへ適応すること に加え,残響の影響が大きい帯域による音声 明瞭度への影響を抑える,スケルチ効果のよ うな適応が生じることが示唆された。

謝辞

本研究では、実施にあたって JSPS 科研費 24K23899 の助成を受け、上智大学「人を対象 とする研究」に関する倫理委員会の承認を受 けた (2024-148)。実験にご協力いただいた 方々へ感謝申し上げます。

参考文献

- R. H. Bolt and A. D. MacDonald, J. Acoust. Soc. Am., 21(6), 577–580, 1949.
- [2] A. K. Nábělek and D. Mason, J. Speech, Language, Hear. Res., 24(3), 375–383, 1981.
- [3] E. Harford and J. Barry, J. Speech Hear. Disord., 30(2), 121–138, 1965.
- [4] S. Tsuji and T. Arai, Acoust. Sci. Tech., 44(6), 419–430, 2023.
- [5] H. Kayser et al., EURASIP J. Adv. Signal Process., 298605, 2009.
- [6] NTTアドバンステクノロジ株式会社, "音素 バランス1000文," 1997.
- [7] B. R. Glasberg and B. C. J. Moore, *Hear. Res.*, 47(1–2), 103–138, 1990.
- [8] D. D. Greenwood, J. Acoust. Soc. Am., 87(6), 2592–2605, 1990.
- [9] K. Hopkins et al., J. Acoust. Soc. Am., 123(2), 1140–1153, 2008.
- [10] MathWorks (©1984–2025), "gammatone-FilterBank," https://jp.mathworks.com/help/ audio/ref/gammatonefilterbank-systemobject.html (参照 2025-01-12).
- [11] H. Levitt, J. Acoust. Soc. Am., 49(2B), 467–477, 1971.
- [12] J. B. Firszt et al., Hear. Res., 319, 48-55, 2015.
- [13] K. Iida et al., Applied Acoustics, 68(8), 835– 850, 2007.
- [14] M. J. H. Agterberg et al., Front. Neurosci., 8(8), 1–8, 2014.
- [15] S. Wu et al., Acta Acustica united with Acustica, 100(6), 1067–1072, 2014.
- [16] J. Vanderauwera *et al.*, J. Clin. Med., 9(3), 812, 2020.
- [17] W. Koenig, J. Acoust. Soc. Am., 22(1), 61–62, 1950.
- [18] M. Lavandier and J. F. Culling, J. Acoust. Soc. Am., 123(4), 2237–2248, 2008.